Friday, 1 February 2019


BP 403 T. PHYSICAL PHARMACEUTICS-II   (Theory) 45Hours

Scope: The course deals with the various physica and physicochemical properties, and
principles involved in dosage forms/formulations. Theory and practical
components of the subject help the student to get a better insight into various
areas of formulation research and development, and stability studies of
pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to
1. Understand various physicochemical properties of drug molecules in the
designing the dosage forms
2. Know the principles of chemical kinetics & to use them for stability testing nad
determination of expiry date of formulations
3. Demonstrate use of physicochemical properties in the formulation
development and evaluation of dosage forms.

Course Content:

UNIT-I                                               07 Hours

Colloidal dispersions: Classification of dispersed systems & their general
characteristics, size & shapes of colloidal particles, classification of colloids &
comparative account of their general properties. Optical, kinetic & electrical properties.
Effect of electrolytes, coacervation, peptization& protective action.

UNIT-II                                              10 Hours
Rheology: Newtonian systems, law of flow, kinematic viscosity, effect of temperature,
non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in
formulation, determination of viscosity, capillary, falling Sphere, rotational viscometers
Deformation of solids: Plastic and elastic deformation, Heckel equation, Stress, Strain,
Elastic Modulus

UNIT-III 10 Hours
Coarse dispersion: Suspension, interfacial properties of suspended particles, settling in
suspensions, formulation of flocculated and deflocculated suspensions. Emulsions and
theories of emulsification, microemulsion and multiple emulsions; Stability of emulsions,
preservation of emulsions, rheological properties of emulsions and emulsion
formulation by HLB method.
95
UNIT-IV                                10Hours

Micromeretics: Particle size and distribution, mean particle size, number and weight
distribution, particle number, methods for determining particle size by different
methods, counting and separation method, particle shape, specific surface, methods for
determining surface area, permeability, adsorption, derived properties of powders,
porosity, packing arrangement, densities, bulkiness & flow properties.
UNIT-V                                  10 Hours

Drug stability: Reaction kinetics: zero, pseudo-zero, first & second order, units of basic
rate constants, determination of reaction order. Physical and chemical factors influencing
the chemical degradation of pharmaceutical product: temperature, solvent, ionic strength,
dielectric constant, specific & general acid base catalysis, Simple numerical problems.
Stabilization of medicinal agents against common reactions like hydrolysis & oxidation.
Accelerated stability testing in expiration dating of pharmaceutical dosage forms.
Photolytic degradation and its prevention

BP 407P. PHYSICAL PHARMACEUTICS- II    (Practical) 3 Hrs/week

1. Determination of particle size, particle size distribution using sieving method
2. Determination of particle size, particle size distribution using Microscopic method
3. Determination of bulk density, true density and porosity
4. Determine the angle of repose and influence of lubricant on angle of repose
5. Determination of viscosity of liquid using Ostwald’s viscometer
6. Determination sedimentation volume with effect of different suspending agent
7. Determination sedimentation volume with effect of different concentration of
single suspending agent
8. Determination of viscosity of semisolid by using Brookfield viscometer
9. Determination of reaction rate constant first order.
10. Determination of reaction rate constant second order
11. Accelerated stability studies

No comments:

Post a Comment